This is a research engineering role with direct production impact. You won’t be publishing ideas in isolation—you will translate new RL algorithms, scheduling methods, and inference optimizations into production-grade systems that power Together’s API. Success in this role means shipping measurable improvements in latency, throughput, cost, and model quality at scale. We are looking for researchers who enjoy owning systems end-to-end and turning frontier ideas into robust infrastructure.
The Core ML (Turbo) at Together AI team sits at the intersection of efficient inference (algorithms, architectures, engines) and post‑training / RL systems. We build and operate the systems behind Together’s API, including high‑performance inference and RL/post‑training engines that can run at production scale.
Our mandate is to push the frontier of efficient inference and RL‑driven training: making models dramatically faster and cheaper to run, while improving their capabilities through RL‑based post‑training (e.g., GRPO‑style objectives). This work lives at the interface of algorithms and systems: asynchronous RL, rollout collection, scheduling, and batching all interact with engine design, creating many knobs to tune across the RL algorithm, training loop, and inference stack. Much of the job is modifying production inference systems—for example, SGLang‑ or vLLM‑style serving stacks and speculative decoding systems such as ATLAS—grounded in a strong understanding of post‑training and inference theory, rather than purely theoretical algorithm design.
You’ll work across the stack—from RL algorithms and training engines to kernels and serving systems—to build and improve frontier models via RL pipelines. People on this team are often spiky: some are more RL‑first, some are more systems‑first. Depth in one of these areas plus appetite to collaborate across (and grow toward more full‑stack ownership over time) is ideal.
We don’t expect anyone to check every box below. People on this team typically have deep expertise in one or more areas and enough breadth (or interest) to work effectively across the stack. The closer you are to full‑stack (inference + post‑training/RL + systems), the stronger the fit—but being spiky in one area and eager to grow is absolutely okay.
You might be a good fit if you:
Minimum qualifications
If you’re excited about the role and strong in some of these areas, we encourage you to apply even if you don’t meet every single requirement.
Together AI is a research-driven artificial intelligence company. We believe open and transparent AI systems will drive innovation and create the best outcomes for society, and together we are on a mission to significantly lower the cost of modern AI systems by co-designing software, hardware, algorithms, and models. We have contributed to leading open-source research, models, and datasets to advance the frontier of AI, and our team has been behind technological advancement such as FlashAttention, Hyena, FlexGen, and RedPajama. We invite you to join a passionate group of researchers in our journey in building the next generation AI infrastructure.
We offer competitive compensation, startup equity, health insurance and other competitive benefits. The US base salary range for this full-time position is: $200,000 - $280,000 + equity + benefits. Our salary ranges are determined by location, level and role. Individual compensation will be determined by experience, skills, and job-related knowledge.
Together AI is an Equal Opportunity Employer and is proud to offer equal employment opportunity to everyone regardless of race, color, ancestry, religion, sex, national origin, sexual orientation, age, citizenship, marital status, disability, gender identity, veteran status, and more.
Please see our privacy policy at https://www.together.ai/privacy
Together AI provides the fastest and most cost-efficient tools for building generative AI models, with a dedicated team of experts to support users in training their own models and advancing AI technology.
Please mention you found this job on AI Jobs. It helps us get more startups to hire on our site. Thanks and good luck!
Understand the required skills and qualifications, anticipate the questions you may be asked, and study well-prepared answers using our sample responses.
Research Engineer Q&A's