Machine Learning Engineer (with Vertex AI Experience)

AI overview

Drive the end-to-end machine learning lifecycle by designing scalable ML solutions using Vertex AI, collaborating with cross-functional teams, and implementing best practices in model governance.

Tiger Analytics is looking for a skilled and innovative Machine Learning Engineer with hands-on experience in Google Cloud Platform (GCP) and Vertex AI to design, build, and deploy scalable ML solutions. You will play a key role in operationalizing machine learning models and driving the end-to-end ML lifecycle, from data ingestion to model serving and monitoring.

Key Responsibilities:

  • Develop, train, and optimize ML models using Vertex AI, including Vertex Pipelines, AutoML, and custom model training.
  • Design and build scalable ML pipelines for feature engineering, training, evaluation, and deployment.
  • Deploy models to production using Vertex AI endpoints and integrate with downstream applications or APIs.
  • Collaborate with data scientists, data engineers, and MLOps teams to enable reproducible and reliable ML workflows.
  • Monitor model performance and set up alerting, retraining triggers, and drift detection mechanisms.
  • Utilize GCP services such as BigQuery, Dataflow, Cloud Functions, Pub/Sub, and GCS in ML workflows.
  • Apply CI/CD principles to ML models using Vertex AI Pipelines, Cloud Build, and GitOps practices.
  • Implement model governance, versioning, explainability, and security best practices within Vertex AI.
  • Document architecture decisions, workflows, and model lifecycle clearly for internal stakeholders.

Requirements

1. Advanced Generative AI
    - Advanced RAG including Graph based hybrid retrieval
    - Multimodal agent

  • Deep knowledge on ADK , Langchain Agentic Frameworks
  • Fine tuning and Distillation 

2. Python Expertise
    - Expert in Python with strong OOP and functional programming skills
    - Proficient in ML/DL libraries: TensorFlow, PyTorch, scikit-learn, pandas, NumPy, PySpark
    - Experience with production-grade code, testing, and performance optimization
 
3. GCP Cloud Architecture & Services
    - Proficiency in GCP services such as:
      - Vertex AI
      - BigQuery
      - Cloud Storage
      - Cloud Run
      - Cloud Functions
      - Pub/Sub
      - Dataproc
      - Dataflow
    - Understanding of IAM, VPC

6. API Development & Integration
    - Designs and builds RESTful APIs using FastAPI or Flask
    - Integrates ML models into APIs for real-time inference
    - Implements authentication, logging, and performance optimization
 
7. System Design & Scalability
    - Designs end-to-end AI systems with scalability and fault tolerance in mind
    - Hands-on experience in developing distributed systems, microservices, and asynchronous processing

Benefits

Benefits

Significant career development opportunities exist as the company grows. The position offers a unique opportunity to be part of a small, fast-growing, challenging and entrepreneurial environment, with a high degree of individual responsibility.

Tiger Analytics provides equal employment opportunities to applicants and employees without regard to race, color, religion, age, sex, sexual orientation, gender identity/expression, pregnancy, national origin, ancestry, marital status, protected veteran status, disability status, or any other basis as protected by federal, state, or local law.

Tiger Analytics is an advanced analytics and AI consulting company enabling enterprises to generate business value through data. We are the trusted data sciences and data engineering partner for several Fortune 500 firms. We bring expertise in marketin...

View all jobs
Get hired quicker

Be the first to apply. Receive an email whenever similar jobs are posted.

Ace your job interview

Understand the required skills and qualifications, anticipate the questions you may be asked, and study well-prepared answers using our sample responses.

Machine Learning Engineer Q&A's
Report this job
Apply for this job