Applied Research - RL & Agents

AI overview

Contribute to cutting-edge AI infrastructure by designing robust systems and prototypes for next-generation AI agents, impacting real workloads and decision-making at scale.

Building Open Superintelligence Infrastructure
Prime Intellect is building the open superintelligence stack - from frontier agentic models to the infra that enables anyone to create, train, and deploy them. We aggregate and orchestrate global compute into a single control plane and pair it with a frontier open post-training stack: environments, evals, sandboxes, and high-performance training infrastructure for RL, SFT, and more. We enable researchers, startups and enterprises to run end-to-end reinforcement learning at frontier scale, adapting models to real tools, workflows, and deployment contexts.

We recently raised $15mm in funding (total of $20mm raised) led by Founders Fund, with participation from Menlo Ventures and prominent angels including Andrej Karpathy (Eureka AI, Tesla, OpenAI), Tri Dao (Chief Scientific Officer of Together AI), Dylan Patel (SemiAnalysis), Clem Delangue (Huggingface), Emad Mostaque (Stability AI) and many others.


Role Impact

This is a role at the intersection of cutting-edge RL/post-training methods and applied agent systems. You’ll have a direct impact on shaping how advanced models are aligned, deployed, and used in the real world by:

  • Advancing Agent Capabilities: Designing and iterating on next-generation AI agents that tackle real workloads—workflow automation, reasoning-intensive tasks, and decision-making at scale.

  • Building Robust Infrastructure: Developing the systems and frameworks that enable these agents to operate reliably, efficiently, and at massive scale.

  • Bridge Between Applications & Research: Translate ambiguous objectives into clear technical requirements that guide product and research priorities.

  • Prototype in the Field: Rapidly design and deploy agents, evals, and harnesses for real-world tasks to validate solutions.

Application-Driven Research & Infrastructure

  • Shape the direction and feature set for verifiers, the Environments Hub, training services, and other research platform offerings.

  • Build high‑quality examples, reference implementations, and “recipes” that make it easy for others to extend the stack.

  • Prototype agents and eval harnesses tailored to real-world use cases and external systems.

  • Pair with technical end‑users (research teams, infra‑heavy customers, open‑source contributors) to design environments, evals, and verifiers that reflect real workloads.

Post-training & Reinforcement Learning

  • Design and implement novel RL and post-training methods (RLHF, RLVR, GRPO, etc.) to align large models with domain-specific tasks.

  • Build evaluations and harnesses and to measure reasoning, robustness, and agentic behavior in real-world workflows.

  • Prototype multi-agent and memory-augmented systems to expand capabilities for downstream applications.

  • Experiment with post-training recipes to optimize downstream performance.

Agent Development & Infrastructure

  • Rapidly prototype and iterate on AI agents for automation, workflow orchestration, and decision-making.

  • Extend and integrate with agent frameworks to support evolving feature requests and performance requirements.

  • Architect and maintain distributed training/inference pipelines, ensuring scalability and cost efficiency.

  • Develop observability and monitoring (Prometheus, Grafana, tracing) to ensure reliability and performance in production deployments.

Requirements

  • Strong background in machine learning engineering, with experience in post-training, RL, or large-scale model alignment.

  • Experience with agent frameworks and tooling (e.g. DSPy, LangGraph, MCP, Stagehand).

  • Familiarity with distributed training/inference frameworks (e.g., vLLM, sglang, Accelerate, Ray, Torch).

  • Track record of research contributions (publications, open-source contributions, benchmarks) in ML/RL.

  • Passion for advancing the state-of-the-art in reasoning and building practical, agentic AI systems.

  • Strong technical writing abilities (documentation, blogs, papers) and research taste.

  • Eagerness to drive collaborations with external partners and engage with the broader open-source community.

Nice-to-Haves

  • Experience with web programming (React, TypeScript, Next.js).

  • Experience running LLM evaluations and/or synthetic data generation.

  • Experience deploying containerized systems at scale (Docker, Kubernetes, Terraform).

What We Offer

  • Competitive Compensation + equity incentives

  • Flexible Work (San Francisco or hybrid-remote)

  • Visa Sponsorship & relocation support

  • Professional Development budget

  • Team Off-sites & conference attendance


Growth Opportunity

You’ll join a mission-driven team working at the frontier of open, superintelligence infra. In this role, you’ll have the opportunity to:

  • Shape the evolution of agent-driven solutions—from research breakthroughs to production systems used by real customers.

  • Collaborate with leading researchers, engineers, and partners pushing the boundaries of RL and post-training.

  • Grow with a fast-moving organization where your contributions directly influence both the technical direction and the broader AI ecosystem.

If you’re excited to move fast, build boldly, and help define how agentic AI is developed and deployed, we’d love to hear from you.

Ready to build the open superintelligence infrastructure of tomorrow?
Apply now to help us make powerful, open AGI accessible to everyone.

Perks & Benefits Extracted with AI

  • Flexible Work Hours: Flexible Work (San Francisco or hybrid-remote)
  • Learning Budget: Professional Development budget
  • Team off-sites and conferences: Team Off-sites & conference attendance
  • Visa Sponsorship: Visa Sponsorship & relocation support
Get hired quicker

Be the first to apply. Receive an email whenever similar jobs are posted.

Report this job
Apply for this job